
Introduction to vertex operator algebras and their representations
James Lepowsky, Haisheng Li - Collection Progress in Mathematics
Résumé
The deep and relatively new field of vertex operator algebras is intimately related to a variety of areas in mathematics and physics: for example, the concepts of "monstrous moonshine," infinite-dimensional Lie theory, string theory, and conformal field theory. This book introduces the reader to the fundamental theory of vertex operator algebras and its basic techniques and examples. Beginning with detailed presentation of the theoretical foundations and proceeding to a range of applications, the text includes a number of new, original results and also highlights and brings fresh perspective to important works of many researchers.
After introducing the elementary "formal calculus" underlying the subject, the book provides an axiomatic development of vertex operator algebras and their modules, expanding on the early contributions of R. Borcherds, I. Frenkel, J. Lepowsky, A. Meurman, Y.-Z. Huang, C. Dong, Y. Zhu and others. The concept of a "representation" of a vertex (operator) algebra is treated in detail, following and extending the work of H. Li; this approach is used to construct important families of vertex (operator) algebras and their modules.
Requiring only a familiarity with basic algebra, Introduction to Vertex Operator Algebras and Their Representations will be useful for graduate students and researchers in mathematics and physics. The book's self-contained presentation of the core topics will equip readers to embark on many active research directions related to vertex operator algebras, group theory, representation theory, and string theory.
Sommaire
- Formal calculus
- Vertex operator algebras: the axiomatic basics
- Modules
- Representation of Vertex algebras and the construction Vertex algebras and modules
- Construction of families of Vertex operator algebras and modules
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Birkhäuser |
Auteur(s) | James Lepowsky, Haisheng Li |
Collection | Progress in Mathematics |
Parution | 25/03/2004 |
Nb. de pages | 324 |
Format | 15,7 x 24 |
Couverture | Relié |
Poids | 598g |
Intérieur | Noir et Blanc |
EAN13 | 9780817634087 |
ISBN13 | 978-0-8176-3408-7 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des groupes
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour la physique
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Mathématiques Logiciels de calcul
- Sciences Physique