
Résumé
The theme of this book is operator theory on C*-algebras. The main novel tool employed is the concept of local multipliers. Originally devised by Elliott and Pedersen in the 1970's in order to study derivations and automorphisms, local multipliers of C*-algebras were developed into a powerful device by the present authors in the 1990's.
The book serves two purposes. The first part provides the reader - specialist and advanced graduate student alike - with a thorough introduction to the theory of local multipliers. Only a minimal knowledge of algebra and analysis is required, as the prerequisites in both non-commutative ring theory and basic C*-algebra theory are presented in the first chapter. In the second part, local multipliers are used to obtain a wealth of information on various classes of operators on C*-algebras, including (groups of) automorphisms, derivations, elementary operators, Lie isomorphisms and Lie derivations, as well as others.
Many of the results appear in print for the first time. The authors have made an effort to avoid intricate technicalities thus some of the results are not pushed to their utmost generality. Several open problems are discussed, and hints for further developments are given.
Contents
- Introduction
- Prerequisites
- The Symmetric Algebra of Quotients and its Bounded Analogue
- The Centre of the Local Multiplier Algebra
- Automorphisms and Derivations
- Elementary Operators and Completely Bounded Mappings
- Lie Mappings and Related Operators
L'auteur - P. Ara
Universitat Autonoma de Barcelona, Bellaterra, Spain
L'auteur - M. Mathieu
The Queen's University of Belfast, UK
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | P. Ara, M. Mathieu |
Parution | 31/12/2002 |
Nb. de pages | 332 |
Format | 630 |
Couverture | Relié |
Poids | 630g |
Intérieur | Noir et Blanc |
EAN13 | 9781852332372 |
ISBN13 | 978-1-85233-237-2 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des nombres
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des groupes
- Sciences Mathématiques Mathématiques par matières Analyse Analyse complexe
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Mathématiques Mathématiques par matières Topologie
- Sciences Physique Physique fondamentale Physique et mécanique quantique