Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Postmodern Analysis
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Postmodern Analysis

Postmodern Analysis

Jürgen Jost

384 pages, parution le 12/11/2002 (2eme édition)

Résumé

This is an introduction to advanced analysis at the beginning graduate level that blends a modern presentation with concrete examples and applications, in particular in the areas of calculus of variations and partial differential equations. The book does not strive for abstraction for its own sake, but tries rather to impart a working knowledge of the key methods of contemporary analysis, in particular those that are also relevant for application in physics. It provides a streamlined and quick introduction to the fundamental concepts of Banach space and Lebesgue integration theory and the basic notions of the calculus of variations, including Sobolev space theory.

The new edition contains additional material on the qualitative behavior of solutions of ordinary differential equations, some further details on Lp and Sobolev functions, partitions of unity and a brief introduction to abstract measure theory.

Contents

Chapter I. Calculus for Functions of One Variable
  • Prerequisites
  • Limits and Continuity of Functions
  • Differentiability
  • Characteristic Properties of Differentiable Functions. Differential Equations
  • The Banach Fixed Point Theorem. The Concept of Banach Space
  • Uniform Convergence. Interchangeability of Limiting Processes. Examples of Banach Spaces. The Theorem of Arzela-Ascoli
  • Integrals and Ordinary Differential Equations
Chapter II. Topological Concepts
  • Metric Spaces: Continuity, Topological Notions, Compact
Chapter III. Calculus in Euclidean and Banach Spaces
  • Differentiation in Banach Spaces
  • Differential Calculus in R(d)
  • The Implicit Function Theorem. Applications
  • Curves in R(d). Systems of ODEs
Chapter IV. The Lebesgue Integral
  • Preparations. Semicontinuous Functions
  • The Lebesgue Integral for Semicontinuous Functions. The Volume of Compact Sets
  • Null Functions and Null Sets. The Theorem of Fubini
  • The Convergence Theorems of Lebesgue Integration Theory
  • Measurable Functions and Sets. Jensen's Inequality. The Theorem of Egorov
  • The Transformation Formula
Chapter V. L(p) and Sobolev Spaces
  • The L(p)-Spaces
  • Integration by Parts. Weak
  • Derivatives. Sobolev Spaces Weak derivatives. Sobolev Spaces
Chapter VI. Introduction to the Calculus of Variations and Elliptic Partial Differential Equations
  • Hilbert Spaces. Weak Convergence
  • Variational Principles and Partial Differential Equations
  • Regularity of Weak Solutions
  • The Maximum Principle
  • The Eigenvalue Problem for the Laplace Operator

L'auteur - Jürgen Jost

Honorary Professor, Department of Mathematics, University of Leipzig
Member, Academy of Sciences and Literature, Mainz, the Saxonian Academy of Sciences, Leipzig, and the German Academy of the Natural Scientists - Leopoldina
External Faculty Member, Santa Fe Institute for the Sciences of Complexity, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Jürgen Jost
Parution 12/11/2002
Édition  2eme édition
Nb. de pages 384
Format 15,5 x 23,5
Couverture Broché
Poids 597g
Intérieur Noir et Blanc
EAN13 9783540438731

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription