
Résumé
This is an introduction to advanced analysis at the beginning graduate level that blends a modern presentation with concrete examples and applications, in particular in the areas of calculus of variations and partial differential equations. The book does not strive for abstraction for its own sake, but tries rather to impart a working knowledge of the key methods of contemporary analysis, in particular those that are also relevant for application in physics. It provides a streamlined and quick introduction to the fundamental concepts of Banach space and Lebesgue integration theory and the basic notions of the calculus of variations, including Sobolev space theory.
The new edition contains additional material on the qualitative behavior of solutions of ordinary differential equations, some further details on Lp and Sobolev functions, partitions of unity and a brief introduction to abstract measure theory.
Contents
Chapter I. Calculus for Functions of One Variable- Prerequisites
- Limits and Continuity of Functions
- Differentiability
- Characteristic Properties of Differentiable Functions. Differential Equations
- The Banach Fixed Point Theorem. The Concept of Banach Space
- Uniform Convergence. Interchangeability of Limiting Processes. Examples of Banach Spaces. The Theorem of Arzela-Ascoli
- Integrals and Ordinary Differential Equations
- Metric Spaces: Continuity, Topological Notions, Compact
- Differentiation in Banach Spaces
- Differential Calculus in R(d)
- The Implicit Function Theorem. Applications
- Curves in R(d). Systems of ODEs
- Preparations. Semicontinuous Functions
- The Lebesgue Integral for Semicontinuous Functions. The Volume of Compact Sets
- Null Functions and Null Sets. The Theorem of Fubini
- The Convergence Theorems of Lebesgue Integration Theory
- Measurable Functions and Sets. Jensen's Inequality. The Theorem of Egorov
- The Transformation Formula
- The L(p)-Spaces
- Integration by Parts. Weak
- Derivatives. Sobolev Spaces Weak derivatives. Sobolev Spaces
- Hilbert Spaces. Weak Convergence
- Variational Principles and Partial Differential Equations
- Regularity of Weak Solutions
- The Maximum Principle
- The Eigenvalue Problem for the Laplace Operator
L'auteur - Jürgen Jost
Honorary Professor, Department of Mathematics,
University of Leipzig
Member, Academy of Sciences and Literature, Mainz, the
Saxonian Academy of Sciences, Leipzig, and the German
Academy of the Natural Scientists - Leopoldina
External Faculty Member, Santa Fe Institute for the
Sciences of Complexity, 1399 Hyde Park Road, Santa Fe, NM
87501, USA
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Jürgen Jost |
Parution | 12/11/2002 |
Édition | 2eme édition |
Nb. de pages | 384 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 597g |
Intérieur | Noir et Blanc |
EAN13 | 9783540438731 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse