
Résumé
Together with Toeplitz operators Hankel operators form one of the most important classes of operators on spaces of analytic functions. They can be defined as operators having infinite Hankel matrices with respect to a fixed orthonormal basis. Such matrices of finite size were introduced by Hankel who studied their determinants. Later Hankel operators (or matrices) were used on numerous occasions, including moment problems and orthogonal polynomials. In 1957 Nehari described the bounded Hankel operators. This book will become the major standard reference on Hankel operators. Essentially all the material in this manuscript already appears in the literature, but most of it has not appeared in book form. The author has done a tremondous service in pulling all this material together, unifying it, and giving it a consistent notation. Peller has not simply pasted together dozens of papers...he has simplified the original proofs of theorems, as is often possible as a subject matures. Vladimir Peller is Professor of Mathematics at Michigan State University and he is a leading expert in the field of Hankel Operators.
Contents
- An Introduction to Hankel Operators
- Vectorial Hankel Operators
- Toeplitz Operators
- Singular Values of Hankel Operators
- Parametrization of Solutions of the Nehari Problem
- Hankel Operators and Schatten-von Neumann Classes
- Best Approximation by Analytic and Meromorphic Functions
- An Introduction to Gaussian Spaces
- Regularity Conditions for Stationary Processes
- Spectral Properties of Hankel Operators
- Hankel Operators in Control Theory
- The Inverse Spectral Problem for Self-Adjoint Hankel Operators
- Wiener-Hopf Factorizations and the Recovery Problem
- Analytic Approximation of Matrix Functions
- Hankel Operators and Similarity to a Contraction
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Vladimir V. Peller |
Parution | 06/02/2003 |
Nb. de pages | 800 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 1230g |
Intérieur | Noir et Blanc |
EAN13 | 9780387955483 |
ISBN13 | 978-0-387-95548-3 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre linéaire
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des nombres
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie algébrique
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques