
Résumé
This book contains over 300 exercises and solutions covering a wide variety of topics in matrix algebra. They can be used for independent study or in creating a challenging and stimulating environment that encourages active engagement in the learning process. Thus, the book can be of value to both teachers and students. The requisite background is some previous exposure to matrix algebra of the kind obtained in a first course. The exercises are those from an earlier book by the same author entitled Matrix Algebra From a Statistician's Perspective. They have been restated (as necessary) to stand alone, and the book includes extensive and detailed summaries of all relevant terminology and notation. The coverage includes topics of special interest and relevance in statistics and related disciplines, as well as standard topics. The overlap with exercises available from other sources is relatively small.
L'auteur - David A. Harville
David A. Harville is a research staff member in the Mathematical Sciences Department of the IBM T.J. Watson Research Center. Prior to joining the Research Center, he served ten years as a mathematical statistician in the Applied Mathematics Research Laborator of the Aerospace Research Laboratories at Wright-Patterson Air Force Base, Ohio, followed by twenty years as a full professor in the Department of Statistics at Iowa State University. He has extensive experience in linear statistical models, which is an area of statistics that makes heavy use of matrix algebra, and has taught (on numerous occasions) graduate-level courses on that topic. He has authored over 70 research articles. His work has been recognized by his election as a Fellow of the American Statistical Association and the Institute of Mathematical Statistics and as a member of the International Statistical Insititute.
Sommaire
- Some Notation
- Some Terminology
- Matrices
- Submatrices and Partitioned Matrices
- Linear Dependence and Independence
- Linear Spaces: Row and Column Spaces
- Trace of a (Square Matrix)
- Geometrical Considerations
- Linear Systems: Consistency and Compatibility
- Inverse Matrices
- Generalized Inverses
- Idempotent Matrices
- Linear Systems: Solutions
- Projections and Projection Matrices
- Determinants
- Linear, Bilinear, and Quadratic Forms
- Matrix Differentiation
- Kronecker Products and the Vec and Vech operators
- Intersections and Sums and Subspaces
- Sums (and Differences) of Matrices
- Minimization of a Second-Degree Polynomial (in n
- Variables) Subject to Linear Constraints
- The Moore-Penrose Inverse
- Eigenvalues and Eigenvectors
- Linear Transformations
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | David A. Harville |
Parution | 19/10/2001 |
Nb. de pages | 272 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 440g |
Intérieur | Noir et Blanc |
EAN13 | 9780387953182 |
ISBN13 | 978-0-387-95318-2 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre linéaire
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des nombres
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie algébrique
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques