
Quantization Methods in the Theory of Differential Equations - Volume 3
V.E. Nazaikinskii, B.W. Schulze, B.Yu. Sternin
Résumé
- gives a systematic study of quantization-based methods for linear partial differential equations
- describes quantization of all types of classical objects (states, observables, canonical transformations)
- considers semiclassical asymptotic quantization based on the wave packet transform and quantization of Poisson brackets via noncommutative analysis
- provides unified treatment of various kinds of asymptotics
- includes numerous examples helping the reader understand the material
- outlines a wide range of applications from differential equations to theoretical physics
- examines propagation of electromagnetic waves in plasma and ionosphere channelling of high frequency signals
- constructs asymptotic and approximate solutions of 3D Maxwell equations
Contents
- I Semiclassical Quantization
- 1 Quantization and Microlocalization
-
- Classical mechanics and quantum mechanics
- The correspondence principle and the quantization problem
- Coordinate and momentum representations and the Fourier transform
- Hamiltonians
- Semiclassical states
- The oscillation front and the problem of microlocal analysis
- 2 Quantization by the Wave Packet Transform
-
- Quantization of pure states
- The wave packet transform
- Quantization of observables
- Quantization of mixed states
- Quantization of canonical transformations
- Quantization in the wave packet representation
- 3 Maslov's Canonical Operator and Hormander's Oscillatory Integrals
-
- The classification problem for oscillatory integrals
- Transformations of phase functions
- The local classification of nondegenerate phase functions; Normal forms
- The classification of oscillatory integrals and the canonical operator
- Simultaneous asymptotics
- 4 Topological Aspects of Quantization Conditions
-
- Cech cocycles and obstructions to the existence of the canonical operator
- Quantized measures and a differential form representing the Maslov-Arnold class
- The index of paths on Lagrangian manifolds
- Quantization of symplectic manifolds
- 5 The Schrodinger Equation
-
- The Cauchy problem
- The spectrum asymptotics
- Asymptotics of the Green function
- 6 The Maxwell Equations
-
- Statement of the problem
- Solution of the homogeneous Maxwell equations
- Asymptotics of the Green function
- Solution of the nonhomogeneous Maxwell equations
- The Helmholtz equation on the sphere
- 7 Equations with Trapping Hamiltonians
-
- Statement of the problem
- A scheme for constructing the regularizer
- The contribution of nonclosed trajectories
- The contribution of closed trajectories
- Example: propagation of short electromagnetic waves in ionosphere
- II Quantization by the Method of Ordered Operators (Noncommutative Analysis)
- 8 Noncommutative Analysis: Main Ideas, Definitions, and Theorems
-
- Functions of one operator
- Functions of several operators
- Main formulas of operator calculus
- Main tools of noncommutative analysis
- Composition laws and ordered representations
- 9 Exactly Soluble Commutation Relations
-
- Statement of the problem
- Some examples
- Lie commutation relations
- Nonlinear commutation relations
- 10 Operator Algebras on Singular Manifolds
-
- Statement of the problem
- Operators on the model cone
- Operators on the model cusp of order A:
- Application: the construction of regularizers and proof of the finiteness theorem
- 11 The High-Frequency Asymptotics in the Problem of Wave Propagation in Plasma
-
- Statement of the problem
- Mixed asymptotics: the general scheme
- The asymptotic solution of the main problem
- Analysis of the asymptotic solution
- Appendices
- A Complex Pseudocoordinates and Classical Mechanics
-
- Complex pseudocoordinates
- Classical mechanics in complex pseudocoordinates
- B Some Formulas Related to the Wave Packet TVansform and Quantization
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Taylor and Francis Books |
Auteur(s) | V.E. Nazaikinskii, B.W. Schulze, B.Yu. Sternin |
Parution | 02/07/2002 |
Nb. de pages | 356 |
Format | 17,5 x 25,5 |
Couverture | Relié |
Poids | 800g |
Intérieur | Noir et Blanc |
EAN13 | 9780415273640 |
ISBN13 | 978-0-415-27364-0 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse