Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Quantization Methods in the Theory of Differential Equations - Volume 3
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Quantization Methods in the Theory of Differential Equations - Volume 3

Quantization Methods in the Theory of Differential Equations - Volume 3

V.E. Nazaikinskii, B.W. Schulze, B.Yu. Sternin

356 pages, parution le 02/07/2002

Résumé

This volume:
  • gives a systematic study of quantization-based methods for linear partial differential equations
  • describes quantization of all types of classical objects (states, observables, canonical transformations)
  • considers semiclassical asymptotic quantization based on the wave packet transform and quantization of Poisson brackets via noncommutative analysis
  • provides unified treatment of various kinds of asymptotics
  • includes numerous examples helping the reader understand the material
  • outlines a wide range of applications from differential equations to theoretical physics
  • examines propagation of electromagnetic waves in plasma and ionosphere channelling of high frequency signals
  • constructs asymptotic and approximate solutions of 3D Maxwell equations
The volume is intended for scientists, undergraduates and graduate students specializing in differential equations, applied mathematics and mathematical and theoretical physics.

Contents

  • I Semiclassical Quantization
  • 1 Quantization and Microlocalization
    • Classical mechanics and quantum mechanics
    • The correspondence principle and the quantization problem
    • Coordinate and momentum representations and the Fourier transform
    • Hamiltonians
    • Semiclassical states
    • The oscillation front and the problem of microlocal analysis
  • 2 Quantization by the Wave Packet Transform
    • Quantization of pure states
    • The wave packet transform
    • Quantization of observables
    • Quantization of mixed states
    • Quantization of canonical transformations
    • Quantization in the wave packet representation
  • 3 Maslov's Canonical Operator and Hormander's Oscillatory Integrals
    • The classification problem for oscillatory integrals
    • Transformations of phase functions
    • The local classification of nondegenerate phase functions; Normal forms
    • The classification of oscillatory integrals and the canonical operator
    • Simultaneous asymptotics
  • 4 Topological Aspects of Quantization Conditions
    • Cech cocycles and obstructions to the existence of the canonical operator
    • Quantized measures and a differential form representing the Maslov-Arnold class
    • The index of paths on Lagrangian manifolds
    • Quantization of symplectic manifolds
  • 5 The Schrodinger Equation
    • The Cauchy problem
    • The spectrum asymptotics
    • Asymptotics of the Green function
  • 6 The Maxwell Equations
    • Statement of the problem
    • Solution of the homogeneous Maxwell equations
    • Asymptotics of the Green function
    • Solution of the nonhomogeneous Maxwell equations
    • The Helmholtz equation on the sphere
  • 7 Equations with Trapping Hamiltonians
    • Statement of the problem
    • A scheme for constructing the regularizer
    • The contribution of nonclosed trajectories
    • The contribution of closed trajectories
    • Example: propagation of short electromagnetic waves in ionosphere
  • II Quantization by the Method of Ordered Operators (Noncommutative Analysis)
  • 8 Noncommutative Analysis: Main Ideas, Definitions, and Theorems
    • Functions of one operator
    • Functions of several operators
    • Main formulas of operator calculus
    • Main tools of noncommutative analysis
    • Composition laws and ordered representations
  • 9 Exactly Soluble Commutation Relations
    • Statement of the problem
    • Some examples
    • Lie commutation relations
    • Nonlinear commutation relations
  • 10 Operator Algebras on Singular Manifolds
    • Statement of the problem
    • Operators on the model cone
    • Operators on the model cusp of order A:
    • Application: the construction of regularizers and proof of the finiteness theorem
  • 11 The High-Frequency Asymptotics in the Problem of Wave Propagation in Plasma
    • Statement of the problem
    • Mixed asymptotics: the general scheme
    • The asymptotic solution of the main problem
    • Analysis of the asymptotic solution
  • Appendices
  • A Complex Pseudocoordinates and Classical Mechanics
    • Complex pseudocoordinates
    • Classical mechanics in complex pseudocoordinates
  • B Some Formulas Related to the Wave Packet TVansform and Quantization

Caractéristiques techniques

  PAPIER
Éditeur(s) Taylor and Francis Books
Auteur(s) V.E. Nazaikinskii, B.W. Schulze, B.Yu. Sternin
Parution 02/07/2002
Nb. de pages 356
Format 17,5 x 25,5
Couverture Relié
Poids 800g
Intérieur Noir et Blanc
EAN13 9780415273640
ISBN13 978-0-415-27364-0

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription