
The Linear Algebra a Beginning Graduate Student Ought to Know
Résumé
Linear algebra is a living, active branch of mathematics which is central to almost all other areas of mathematics, both pure and applied, as well as computer science, the physical and social sciences, and engineering. It entails an extensive corpus of theoretical results as well as a large body of computational techniques. Unfortunately, in recent years the content of the linear algebra courses required to complete an undergraduate degree in mathematics has been depleted to the extent that they fail to provide a sufficient theoretical or computational background. Students are not only less able to formulate or even follow mathematical proofs, they are also less able to understand the mathematics of the numerical algorithms they need for applications. Certainly, the material presented in the average undergraduate linear algebra course is insufficient for graduate study. This book is intended to fill this gap by providing enough material "theoretical and computational" to allow the student to work independently or in advanced courses.
The book is intended to be used in one of several possible ways:
- as a self-study guide ;
- as a textbook for a course in advanced linear algebra, either at the upper-class undergraduate level or at the first-year graduate level ; or
- as a reference book.
It is also designed to prepare a student for the linear algebra portion of prelim exams or PhD qualifying exams.
The volume is self-contained to the extent that it does not assume any previous formal knowledge of linear algebra, though the reader is assumed to have been exposed, at least informally, to some basic ideas and techniques, such as the solution of a small system of linear equations over the real numbers. More importantly, it does assume a seriousness of purpose and a modicum of mathematical sophistication on the part of the reader. The book also contains over 1000 exercises, many of which are very challenging.
Written for: Beginning graduate students or advanced undergraduate students in Mathematics, Computer Science, Engineering, and the Physical Sciences
Sommaire
- Notation and terminology
- Fields
- Vector spaces over a field
- Algebras over a field
- Linear Dependence and Dimension
- Linear Transformations
- The endomorphism algebra of a vector space
- Representation of linear transformations by matrices
- The algebra of square matrices
- Systems of linear equations
- Determinants
- Eigenvalues and eigenvectors
- Krylov subspaces
- The dual space
- Inner product spaces
- Orthogonality
- Selfadjoint endomorphisms
- Unitary and normal endomorphisms
- Moore-Penrose pseudoinverses
- Bilinear transformations and forms
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Jonathan S. Golan |
Parution | 15/11/2006 |
Édition | 2eme édition |
Nb. de pages | 440 |
Format | 16 x 24 |
Couverture | Broché |
Poids | 745g |
Intérieur | Noir et Blanc |
EAN13 | 9781402054945 |
ISBN13 | 978-1-4020-5494-5 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre linéaire
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des nombres
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie algébrique
- Sciences Mathématiques Mathématiques appliquées
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques