
Résumé
Extensive development of a number of topics central to topology, including elementary combinatorial techniques, Sperner's Lemma, the Brouwer Fixed Point Theorem, homotopy theory and the fundamental group, simplicial homology theory, the Hopf Trace Theorem, the Lefschetz Fixed Point Theorem, the Stone-Weierstrass Theorem, and Morse functions. Includes new section of solutions to selected problems.
Contents
- Point-set topology of Euclidean spaces
- Introduction
- Preliminaries
- Open sets, closed sets, and continuity
- Compact spaces
- Connectivity properties
- Real-valued continuous functions
- Retracts
- Topological dimension Supplementary exercises
- Elementary combinatorial techniques
- Introduction
- Hyperplanes in Rn
- Simplexes and complexes
- Sample triangulations
- Simplicial maps
- Barycentric subdivision
- The Simpiicial Approximation Theorem
- Sperner's Lemma
- The Brouwer Fixed Point Theorem
- Topological dimension of compact subsets of Rn Supplementary exercises
- Homotopy theory and the fundamental group
- Introduction
- The homotopy relation, nullhomotopic maps, and contractible spaces
- Maps of spheres
- The fundamental group
- Fundamental groups of the spheres Supplementary exercises
- Simplicial homology theory
- Introduction
- Oriented complexes and chains
- Boundary operators
- Cycles, boundaries, and homology groups
- Elementary examples
- Cone complexes, augmented complexes, and the homology groups Hp (K(sn+l))
- Incidence numbers and the homology groups Hp (Kn(Sn+1))
- Elementary homological algebra
- The homology complex of a geometric complex
- Acyclic carrier functions
- Invariance of homoiogy groups under barycentric subdivision
- Homomorphisms induced by continuous maps
- Homology groups of topological polyhedra
- The Hopf Trace Theorem
- The Lefschetz Fixed Point Theorem Supplementary exercises
- Differential techniques
- Introduction
- Smooth maps
- The Stone-Weierstrass Theorem
- Derivatives as linear transformations
- Diffcrentiable manifolds
- Tangent spaces and derivatives
- Regular and critical values of smooth maps
- Measure zero and Sard's Theorem
- Morse functions
- Manifolds with boundary
- One-dimensional manifolds
- Topological characterization of Sk
- Smooth tangent vector fields Supplementary exercises
- Solutions to Selected Exercises
- Guide to further study
- Bibliography
- List of symbols andnotation
- Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Dover |
Auteur(s) | Gregory L. Naber |
Parution | 27/11/2003 |
Nb. de pages | 256 |
Format | 13,5 x 21,5 |
Couverture | Broché |
Poids | 275g |
Intérieur | Noir et Blanc |
EAN13 | 9780486414522 |
ISBN13 | 978-0-48-641452-2 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie de Galois
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie non euclidienne
- Sciences Mathématiques Mathématiques par matières Topologie
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques