
Integrable hamiltonian systems
Geometry, topology, classification
Résumé
Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularities, and topological invariants.
The first part of the book systematically presents the general construction of these invariants, including many examples and applications. In the second part, the authors apply the general methods of the classification theory to the classical integrable problems in rigid body dynamics and describe their topologieal portraits, bifurcations of Liouville tori, and local and global topological invariants. They show how the classification theory helps find hidden isomorphisms between integrable systems and present as an example their proof that two famous systems-the Euler case in rigid body dynamics and the Jacobi problem of geodesies on the ellipsoid- are orbitally equivalent.
Integrable Hamiltonian Systems: Geometry, Topology, Classification offers a unique opportunity to explore important, previously unpublished results and acquire generally applicable techniques and tools that enable you to work with a broad class of integrable systems.
Sommaire
- Basic notions
- The topology of foliations on two-dimensional surfaces
- Rough liouville equivalence of integrable systems with two degrees of freedom
- Liouville equivalence of integrable systems with two degrees of freedom
- Orbital classification of integrable systems with two degrees of freedom
- Classification of hamiltonian flows on two-dimensional surfaces up to topological conjugacy
- Smooth conjugacy of hamiltonian flows on two-dimensional surfaces
- Orbital classification of integrable hamiltonian systems with two degrees of freedom. The second step
- Liouville classification of integrable systems with neighborhoods of singular points
- Methods of calculation of topological invariants of integrable hamiltonian systems
- Integrable geodesic flows on two-dimensional surfaces 409
- Liouville classification of integrable geodesic flows on two-dimensional surfaces
- Orbital classification of integrable geodesic flows on two-dimensional surfaces
- The topology of liouville foliations in classical integrable cases in rigid body dynamics
- Maupertuis principle and geodesic equivalence
- Euler case in rigid body dynamics and jacobi problem about geodesics on the ellipsoid. Orbital isomorphism
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Chapman and Hall / CRC |
Auteur(s) | A.V. Bolsinov, A.T. Fomenko |
Parution | 13/04/2004 |
Nb. de pages | 730 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 1163g |
Intérieur | Noir et Blanc |
EAN13 | 9780415298056 |
ISBN13 | 978-0-415-29805-6 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie de Galois
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie non euclidienne
- Sciences Mathématiques Mathématiques par matières Topologie
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour la physique
- Sciences Physique Physique fondamentale Systèmes dynamiques
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Physique