Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Integrable hamiltonian systems
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Integrable hamiltonian systems

Integrable hamiltonian systems

Geometry, topology, classification

A.V. Bolsinov, A.T. Fomenko

730 pages, parution le 13/04/2004

Résumé

Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularities, and topological invariants.

The first part of the book systematically presents the general construction of these invariants, including many examples and applications. In the second part, the authors apply the general methods of the classification theory to the classical integrable problems in rigid body dynamics and describe their topologieal portraits, bifurcations of Liouville tori, and local and global topological invariants. They show how the classification theory helps find hidden isomorphisms between integrable systems and present as an example their proof that two famous systems-the Euler case in rigid body dynamics and the Jacobi problem of geodesies on the ellipsoid- are orbitally equivalent.

Integrable Hamiltonian Systems: Geometry, Topology, Classification offers a unique opportunity to explore important, previously unpublished results and acquire generally applicable techniques and tools that enable you to work with a broad class of integrable systems.

Sommaire

  • Basic notions
  • The topology of foliations on two-dimensional surfaces
  • Rough liouville equivalence of integrable systems with two degrees of freedom
  • Liouville equivalence of integrable systems with two degrees of freedom
  • Orbital classification of integrable systems with two degrees of freedom
  • Classification of hamiltonian flows on two-dimensional surfaces up to topological conjugacy
  • Smooth conjugacy of hamiltonian flows on two-dimensional surfaces
  • Orbital classification of integrable hamiltonian systems with two degrees of freedom. The second step
  • Liouville classification of integrable systems with neighborhoods of singular points
  • Methods of calculation of topological invariants of integrable hamiltonian systems
  • Integrable geodesic flows on two-dimensional surfaces 409
  • Liouville classification of integrable geodesic flows on two-dimensional surfaces
  • Orbital classification of integrable geodesic flows on two-dimensional surfaces
  • The topology of liouville foliations in classical integrable cases in rigid body dynamics
  • Maupertuis principle and geodesic equivalence
  • Euler case in rigid body dynamics and jacobi problem about geodesics on the ellipsoid. Orbital isomorphism
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Chapman and Hall / CRC
Auteur(s) A.V. Bolsinov, A.T. Fomenko
Parution 13/04/2004
Nb. de pages 730
Format 16 x 24
Couverture Relié
Poids 1163g
Intérieur Noir et Blanc
EAN13 9780415298056
ISBN13 978-0-415-29805-6

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription