Résumé
Though the search for good selectors dates back to the early twentieth century, selectors play an increasingly important role in current research. This book is the first to assemble the scattered literature into a coherent and elegant presentation of what is known and proven about selectors--and what remains to be found.
The authors focus on selection theorems that are related to the axiom of choice, particularly selectors of small Borel or Baire classes. After examining some of the relevant work of Michael and Kuratowski & Ryll-Nardzewski and presenting background material, the text constructs selectors obtained as limits of functions that are constant on the sets of certain partitions of metric spaces. These include selection theorems for maximal monotone maps, for the subdifferential of a continuous convex function, and for some geometrically defined maps, namely attainment and nearest-point maps.
Assuming only a basic background in analysis and topology, this book is ideal for graduate students and researchers who wish to expand their general knowledge of selectors, as well as for those who seek the latest results.
Contents
Chapter 1. Classical results- Michael's Continuous Selection Theorem
- Results of Kuratowski and Ryll-Nardzewski
- Remarks
- Discretely o-Decomposable Partitions of a Metric Space
- Functions of the First Borel and Baire Classes
- When is a Function of the First Borel Class also of the First Baire Class?
- Remarks
- A General Theorem
- Special Theorems
- Minimal Upper Semi-continuous Set-valued Maps
- Remarks
- A Special Theorem
- A General Theorem
- Remarks
- Monotone Maps and Maximal Monotone Maps
- Subdifferential Maps
- Attainment Maps from X* to X
- Attainment Maps from X to X*
- Metric Projections or Nearest Point Maps
- Some Selections into Families of Convex Sets
- Example
- Remarks
- Diagonal Lemmas
- Selection Theorems
- A Selection Theorem for Lower Semi-continuous Set-valued Maps
- Example
- Remarks
- Boundary Lemmas
- Duals of Asplund Spaces
- A Partial Converse to Theorem 5.4
- Remarks
L'auteur - John E. Jayne
John E. Jayne, PhD, DSc, is Professor of Mathematics at University College London and has been President of the International Mathematics Competition for university students since its inception in 1994
L'auteur - C. Ambrose-Rogers
Ambrose Rogers, DSc, FRS, is Professor Emeritus at
University College London, where he was Astor Professor of
Mathematics for almost thirty years. He is an Elected
Fellow of the Royal Society and a former President of the
London Mathematical Society. His many awards and honors
include the Junior Berwick Prize and De Morgan Medal of the
London Mathematical Society.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Princeton University Press |
Auteur(s) | John E. Jayne, C. Ambrose-Rogers |
Parution | 09/12/2002 |
Nb. de pages | 182 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 472g |
Intérieur | Noir et Blanc |
EAN13 | 9780691096285 |
ISBN13 | 978-0-691-09628-5 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie de Galois
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie non euclidienne
- Sciences Mathématiques Mathématiques par matières Topologie
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques