Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Topological methods in euclidean spaces
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Topological methods in euclidean spaces

Topological methods in euclidean spaces

Gregory L. Naber

256 pages, parution le 27/11/2003

Résumé

Extensive development of a number of topics central to topology, including elementary combinatorial techniques, Sperner's Lemma, the Brouwer Fixed Point Theorem, homotopy theory and the fundamental group, simplicial homology theory, the Hopf Trace Theorem, the Lefschetz Fixed Point Theorem, the Stone-Weierstrass Theorem, and Morse functions. Includes new section of solutions to selected problems.

Contents

  • Point-set topology of Euclidean spaces
    • Introduction
    • Preliminaries
    • Open sets, closed sets, and continuity
    • Compact spaces
    • Connectivity properties
    • Real-valued continuous functions
    • Retracts
    • Topological dimension Supplementary exercises
  • Elementary combinatorial techniques
    • Introduction
    • Hyperplanes in Rn
    • Simplexes and complexes
    • Sample triangulations
    • Simplicial maps
    • Barycentric subdivision
    • The Simpiicial Approximation Theorem
    • Sperner's Lemma
    • The Brouwer Fixed Point Theorem
    • Topological dimension of compact subsets of Rn Supplementary exercises
  • Homotopy theory and the fundamental group
    • Introduction
    • The homotopy relation, nullhomotopic maps, and contractible spaces
    • Maps of spheres
    • The fundamental group
    • Fundamental groups of the spheres Supplementary exercises
  • Simplicial homology theory
    • Introduction
    • Oriented complexes and chains
    • Boundary operators
    • Cycles, boundaries, and homology groups
    • Elementary examples
    • Cone complexes, augmented complexes, and the homology groups Hp (K(sn+l))
    • Incidence numbers and the homology groups Hp (Kn(Sn+1))
    • Elementary homological algebra
    • The homology complex of a geometric complex
    • Acyclic carrier functions
    • Invariance of homoiogy groups under barycentric subdivision
    • Homomorphisms induced by continuous maps
    • Homology groups of topological polyhedra
    • The Hopf Trace Theorem
    • The Lefschetz Fixed Point Theorem Supplementary exercises
  • Differential techniques
    • Introduction
    • Smooth maps
    • The Stone-Weierstrass Theorem
    • Derivatives as linear transformations
    • Diffcrentiable manifolds
    • Tangent spaces and derivatives
    • Regular and critical values of smooth maps
    • Measure zero and Sard's Theorem
    • Morse functions
    • Manifolds with boundary
    • One-dimensional manifolds
    • Topological characterization of Sk
    • Smooth tangent vector fields Supplementary exercises
  • Solutions to Selected Exercises
  • Guide to further study
  • Bibliography
  • List of symbols andnotation
  • Index

Caractéristiques techniques

  PAPIER
Éditeur(s) Dover
Auteur(s) Gregory L. Naber
Parution 27/11/2003
Nb. de pages 256
Format 13,5 x 21,5
Couverture Broché
Poids 275g
Intérieur Noir et Blanc
EAN13 9780486414522
ISBN13 978-0-48-641452-2

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription